
Chapter 7. The Data Frame

The R equivalent of the spreadsheet.

I. Introduction

Most analytical work involves importing data from outside of R and carrying out various manipulations, tests,
and visualizations. In order to complete these tasks, we need to understand how data is stored in R and how
it can be accessed. Once we have a grasp of this we can consider how it can be imported (see Chapter 8).

II. Data Frames

We’ve already seen how R can store various kinds of data in vectors. But what happens if we have a mix of
numeric and character values? One option is a list

a <- list(c(1, 2, 3), "Blue", factor(c("A", "B", "A", "B", "B")))
a

[[1]]
[1] 1 2 3
#
[[2]]
[1] "Blue"
#
[[3]]
[1] A B A B B
Levels: A B

Notice the [[]] here - this is the list element operator. A list in R can contain an arbitrary number of items
(which can be vectors) which can be of different forms - here we have one numeric, one character, an one
factor, and they are all of different lengths.
A list like this may not be something you are likely to want to use often, but in most of the work you will do
in R, you will be working with data that is stored as a data frame - this is R’s most common data structure.
A data frame is a special type of list - it is a list of vectors that have the same length, and whose elements
correspond to one another - i.e. the 4th element of each vector correspond. Think of it like a small table in a
spreadsheet, with the columns corresponding to each vector, and the rows to each record.
There are several different ways to interact with data frames in R. “Built in” data sets are stored as data
frames and can be loaded with the function data(). External data can be read into data frames with the
function read.table() and its relative (as we’ll see in the next chapter). Existing data can be converted
into a data frame using the function data.frame().

cyl<-factor(scan(text=
"6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4"))

am<-factor(scan(text=
"1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1"))

levels(am)<-c("auto","manual")
disp<-scan(text=

"2.62 2.62 1.77 4.23 5.90 3.69 5.90 2.40 2.31 2.75 2.75 4.52 4.52 4.52
7.73 7.54 7.21 1.29 1.24 1.17 1.97 5.21 4.98 5.74 6.55 1.29 1.97 1.56
5.75 2.38 4.93 1.98")

hp<-scan(text=
"110 110 93 110 175 105 245 62 95 123 123 180 180 180 205 215 230 66
52 65 97 150 150 245 175 66 91 113 264 175 335 109")

52

Here we’ve re-created the data on cars that we used in the last chapter.

car <- data.frame(cyl, disp, hp, am)
head(car)

cyl disp hp am
1 6 2.62 110 manual
2 6 2.62 110 manual
3 4 1.77 93 manual
4 6 4.23 110 auto
5 8 5.90 175 auto
6 6 3.69 105 auto

summary(car)

cyl disp hp am
4:11 Min. :1.170 Min. : 52.0 auto :19
6: 7 1st Qu.:1.978 1st Qu.: 96.5 manual:13
8:14 Median :3.220 Median :123.0
Mean :3.781 Mean :146.7
3rd Qu.:5.343 3rd Qu.:180.0
Max. :7.730 Max. :335.0

Now we’ve created a data frame named car. The function head() shows us the first 6 rows (by default).
Here we see that summary(), when called on a data frame, gives the appropriate type of summary for each
variable. The variables within the data frame have names, and we can use the function names() to retrieve
or change these.

names(car)

[1] "cyl" "disp" "hp" "am"

names(car)[4] <- "trans"
names(car)

[1] "cyl" "disp" "hp" "trans"

car$am

NULL

car$trans

[1] manual manual manual auto auto auto auto auto auto auto
[11] auto auto auto auto auto auto auto manual manual manual
[21] auto auto auto auto auto manual manual manual manual manual
[31] manual manual
Levels: auto manual

Data in data frames can be accessed in several ways. We can use the indexing operator [] to access parts of
a data frame by rows and columns. We can also call variables in a data frame by name using the $ operator.

53

car[1:3,]

cyl disp hp trans
1 6 2.62 110 manual
2 6 2.62 110 manual
3 4 1.77 93 manual

car[, 3]

[1] 110 110 93 110 175 105 245 62 95 123 123 180 180 180 205 215 230
[18] 66 52 65 97 150 150 245 175 66 91 113 264 175 335 109

car$hp

[1] 110 110 93 110 175 105 245 62 95 123 123 180 180 180 205 215 230
[18] 66 52 65 97 150 150 245 175 66 91 113 264 175 335 109

Note that when indexing a data frame we use 2 indices, separated by a comma (e.g. [2,3]). Leaving one
value blank implies “all rows” or “all columns”. Here the first line gives us rows 1:3, the second and third
both give us the hp variable.

Where we’ve created a new data frame in this way it is important to note that R has copied the vectors that
make up the data frame. So now we have hp and car$hp. It is important to know this because if we change
one, the other is not changed.

hp[1] == car$hp[1]

[1] TRUE

hp[1] <- 112
hp[1] == car$hp[1]

[1] FALSE

In a case like this, it might be a good idea to remove the vectors we used to make the data frame, just to
reduce the possibility of confusion. We can do this using the function rm().

ls()

[1] "a" "am" "b" "car" "cols" "cyl" "die"
[8] "disp" "hp" "i" "m.r" "model" "model2" "mp3"
[15] "mtcars" "op" "sms" "t" "tab" "x" "x.exp"
[22] "y" "z"

rm(cyl, disp, hp, am)
ls()

[1] "a" "b" "car" "cols" "die" "i" "m.r"
[8] "model" "model2" "mp3" "mtcars" "op" "sms" "t"
[15] "tab" "x" "x.exp" "y" "z"

54

Now these vectors are no longer present in our workspace.

It is useful to know that many R functions (lm() for one) will accept a data argument - so rather than
lm(car$hp~car$cyl) we can use lm(hp~cyl,data=car). When we specify more complex models, this is
very useful. Another approach is to use the function with() - the basic syntax is with(some-data-frame,
do-something) - e.g. with(car,plot(cyl,hp)).

Indexing Data Frames Since our data car is a 2-dimensional object, we ought to use 2 indices. Using
the incorrect number of indices can either cause errors or cause unpleasant surprises. For example, car[,4]
will return the 4th column, as will car$am or car[[4]]. However car[4] will also return the 4th column. If
you had intended the 4th row (car[4,]) and forgotten the comma, this could cause some surprises.

car[[4]]

[1] manual manual manual auto auto auto auto auto auto auto
[11] auto auto auto auto auto auto auto manual manual manual
[21] auto auto auto auto auto manual manual manual manual manual
[31] manual manual
Levels: auto manual

head(car[4])

trans
1 manual
2 manual
3 manual
4 auto
5 auto
6 auto

However, if we use a single index greater than the number of columns in a data frame, R will throw an error
that suggests we have selected rows but not columns.

car[5]

Error in `[.data.frame`(car, 5): undefined columns selected

Similarly, if we try to call for 2 indices on a one-dimensional object (vector) we get an “incorrect number of
dimensions”.

car$hp[2, 3]

Error in car$hp[2, 3]: incorrect number of dimensions

In my experience, these are rather common errors (at least for me!), and you should recognize them.

The function subset() is very useful for working with dataframes, since it allows you to extract data from
the dataframe based on multiple conditions, and it has an easy to read syntax. For example, we can extract
all the records of the faithful data with eruptions less than 3 minutes long (summary() used here to avoid
spewing data over the page).

55

data(faithful)
summary(subset(faithful, eruptions <= 3))

eruptions waiting
Min. :1.600 Min. :43.00
1st Qu.:1.833 1st Qu.:50.00
Median :1.983 Median :54.00
Mean :2.038 Mean :54.49
3rd Qu.:2.200 3rd Qu.:59.00
Max. :2.900 Max. :71.00

III. Attaching data

Many R tutorials will use the function attach() to attach data to the search path in R. This allows us to call
variables by name. For example, in this case we have our data frame car, but to get the data in hp we need
to use car$hp - any function that calls hp directly won’t work - try mean(hp). If we use attach(car) then
typing hp gets us the data, and function calls like mean(hp) will now work. There are (in my experience) 2
problems with this:

A) When attaching data, R makes copies of it, so if we change hp, the copy is changed, but the original
data, car$hp isn’t changed unless we explicitly assign it to be changed - i.e. hp[2]=NA is not the same
as car$hp[2]=NA. Read that again - hp is not necessarily the same as car$hp! THIS IS A VERY
GOOD REASON NOT TO ATTACH DATA.

attach(car)
mean(hp)

[1] 146.6875

hp[1] <- 500
hp[1] == car$hp[1]

[1] FALSE

B) In my experience it is not uncommon to have multiple data sets that have many of the same variable
names (e.g. biomass). When attaching, these conflicting names cause even more confusion. For
example, if we had not removed the vectors cyl, disp, and hp above, then when we try attach(car)
R will give us this message:

The following object is masked _by_ .GlobalEnv:

cyl, disp, hp

For these reasons I view attach() as a convenience for demonstration of R use, and not as a “production”
tool. I do not use (or only very rarely) attach(), and when I do I am sure to use detach() as soon as I am
done with the data.

56

IV. Changing Data Frames

Having imported or created a data frame it is likely that we may want to alter it in some way. It is rather
simple to remove rows or columns by indexing - car<-car[-31,] will remove the 31st row of the data and
assign the data to its previous name. Similarly car[,-4] would remove the 4th column (though here the
changed data was not assigned).

It is also very simple to add new columns (or rows) to a data frame - simply index the row (or column) n+1,
where n is the number of rows (or columns). Alternately, just specifying a new name for a variable can create
a new column. Here we’ll demonstrate both - to calculate a new variable, displacement per cylinder, we first
need cylinders as numeric. We’ll use the ‘approved’ method of converting a factor to numeric - indexing the
levels (see Chapter 2).

car[, 5] <- as.numeric(levels(car$cyl)[car$cyl])
names(car)

[1] "cyl" "disp" "hp" "trans" "V5"

names(car)[5] <- "cyl.numeric"

Our data set now has 5 columns, but until we give the new variable a name it is just "V5", for ‘Variable 5’.
Let’s calculate displacement per cylinder:

car$disp.per.cyl <- car$disp/car$cyl.numeric
names(car)

[1] "cyl" "disp" "hp" "trans"
[5] "cyl.numeric" "disp.per.cyl"

This method of creating a new variable is easier because we don’t have to bother about the variable name, or
about which column in will occupy. Had we used a numeric index of 5, we would overwrite the value in that
column.

Sometimes we might wish to combine 2 data frames together. We can do this using cbind() and rbind()
(for column -wise and row -wise binding respectively). The dataset mtcars contains several variables that are
not in our data frame cars. We’ll use cbind() to combine the 2 data sets.

data(mtcars) # load the data
names(mtcars) # cols 1,5:8,10:11 not in our data

[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
[11] "carb"

dim(car)

[1] 32 6

car <- cbind(car, mtcars[, c(1, 5:8, 10:11)])
dim(car)

[1] 32 13

57

head(car)

cyl disp hp trans cyl.numeric disp.per.cyl mpg drat
Mazda RX4 6 2.62 110 manual 6 0.4366667 21.0 3.90
Mazda RX4 Wag 6 2.62 110 manual 6 0.4366667 21.0 3.90
Datsun 710 4 1.77 93 manual 4 0.4425000 22.8 3.85
Hornet 4 Drive 6 4.23 110 auto 6 0.7050000 21.4 3.08
Hornet Sportabout 8 5.90 175 auto 8 0.7375000 18.7 3.15
Valiant 6 3.69 105 auto 6 0.6150000 18.1 2.76
wt qsec vs gear carb
Mazda RX4 2.620 16.46 0 4 4
Mazda RX4 Wag 2.875 17.02 0 4 4
Datsun 710 2.320 18.61 1 4 1
Hornet 4 Drive 3.215 19.44 1 3 1
Hornet Sportabout 3.440 17.02 0 3 2
Valiant 3.460 20.22 1 3 1

Note that the row names from mtcars have followed the variables from that data frame. A couple of
observations about using adding to data frames: * Don’t use cbind() if the rows don’t correspond!- we’ll see
how to use merge() (Chapter 10) which is the right tool for this situation. (Similarly don’t use rbind() if
the columns don’t correspond). * cbind() and rbind() are rather slow - don’t use them inside a loop! * If
you are writing a loop it is far more efficient to make space for your output (whether in a new data frame or
by adding to one) before the loop begins, adding a row to your data frame in each iteration of a loop will
slow your code down.

EXTRA: Comments There is an attribute of data frames that is reserved for comments. The function
comment() allows one to set this. comment(car) will return NULL because no comment has been set, but we
can use the same function to set comments.

comment(car) <- "A data set derived from the mtcars dataset. Displacement is in liters"

Now we have added a comment to this dataset, and comment(car) will retrieve it.

V. Exercises

1) Use the mtcars data (data(mtcars)) to answer these questions (if you get confused, review the bit on
logical extraction in Chapter 1):
a) Which rows of the data frame contain cars that weigh more than 4000 pounds (the variable is wt, units
are 1000 pounds).
b) Which cars are these? (Hint: since rows are named by car name, use row.names()).
c) What is the mean displacement (in inches3) for cars with at least 200 horsepower (hp).
d) Which car has the highest fuel economy (mpg)?
e) What was the fuel economy for the Honda Civic?
2) Using the mtcars data create a new variable for horsepower per unit weight (hp/wt). Is this a better
predictor of acceleration (qsec; seconds to complete a quarter mile) than raw horsepower? (Hint - check out
correlations between these variables and acceleration, or fit regressions for both models).
3) Use the function subset() to return the cars with 4 cylinders and automatic transmissions (am = 0).
(Hint: use “&” for logical “AND”; see ?Logic and select Logical Operators).

58

